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ABSTRACT

The hyperfine components of the 2;;-2;; transitions of H;CO, H,13CO, and H,C'80 have been mea-
sured to an accuracy of about 100 Hz.

Receivers at A ~ 2 cm will soon rival or even surpass in sensitivity those currently
available at longer wavelengths. There is thus a good prospect that the 2-cm, 2;1-2;,,
formaldehyde rotational line, which has so far been detected in only a few bright sources
(Evans, Cheung, and Sloanaker 1969), will become before long a standard astronomical
tool. The 2y, and 2y, levels are appreciably populated by the microwave background,
implying that the 2-cm line, like the familiar 6-cm one, should be detectable in the
majority of H 11 regions. On an antenna working at both wavelengths, the 2-cm line
has the important advantage over the 6-cm one of a threefold gain in angular resoluticn.

Very precise laboratory measurements of the hyperfine structure (hfs) of the 6-cm
line of several isotopic species of formaldehyde have recently been published (Tucker,
Tomasevich, and Thaddeus 1971; hereafter called Paper I); here we report similar
measurements of the 2;-2, transition for the isotopic species of greatest astronomical
interest: H,CO, Ho'3CO, and H.C'0O. For these species all the coupling constants re-
quired to calculate the hfs of any rotational transition are now determined.

Measurements were made with essentially the same beam-maser spectrometer de-
scribed in Paper I. Samples were not isotopically enriched, monomeric formaldehyde
vapor being simply produced by heating a commercial sample of the solid polymer
paraformaldehyde.

The observed and best-fit theoretical hyperfine spectra are shown in figure 1; the
measured frequencies (or best-fit ones when components are blended) are listed in tables
1 and 2; and the line centers »o and hyperfine coupling constants derived from the theo-
retical fit are listed in table 3. The definition of quantum numbers and coupling constants
is standard, and may be found in Paper I. The present measurements represent a large
improvement in absolute precision over previous work, v, differing from that of Oka,
Hirakawa, and Shimoda (1960) by 60-150 kHz (1-3 km s™'); the hyperfine splittings for
H;CO are in essential agreement with the previous beam-maser measurements of
Thaddeus, Krisher, and Loubser (1964), but are roughly five times as precise.

Figure 2 shows for each isotopic species how the peak frequency of the hyperfine
manifold , is “pulled” by the blend of hyperfine components (assuming a Gaussian line
shape and normal intensities), until at large line width it converges to the line center »o
(see Paper I). The pulling effect amounts at most to about 3 kHz (0.06 km s™*), and is
therefore negligible for most astronomical lines, except possibly the very narrow ones
expected in certain dark nebulae.
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Fi6, 1.—(a) Top two specira, observed hfs of the 21, — 2y, transition of H:CO and H.C*O; botiom,
theoretical best-fit hfs for H:.CO. (b)) Top, most intense observed hfs for H!3CO; bottom, theoretical
best-fit of same (a number of weak satellite lines listed in table 2 fall out of the frequency range in b).

TABLE 1

HYPERFINE FREQUENCIES OF THE 2;; — 212 H2CO anp H,C!30
TRANSITIONS WITH RESPECT TO LINE CENTERS

RELATIVE v—uo (kHz) T
TRANSITION* - INTENSITY
F—F’ (Theoretical) H.CO H,C#0

1—-1.......... 15.00 —19.97+0.07 —19.97+0.11
1-2.......... 5.00 — 7.03+0.10 — 6.71+0.25
S W 5.00 = 2.20+0.10f — 2.3240.25%
392.......... 5199 . 4+ 0.12+0.10f — 0.29+0.25%
393, 41.48 + 0.89+0.07 + 0.74+0.09
22, ... 23.15 +10.74+0.07 +10.95+0.09

23 5.19 +11.514+0.10f  +11.98+0.25%

* F refers to the upper lg:irel of the transition and F’ to the lower.

T Quoted uncertainty represents the standard deviation of eight
measurements. :

1 Calculated frequency.

In the rigid-rotor approximation (highly accurate for all formaldehyde rotational
levels of foreseeable astronomical interest) the spin-rotation constant C of a given nucleus
in all levels is determined by three parameters—the diagonal elements M,a, My, M.,
of the spin-rotation tensor. The relation is (Thaddeus et al. 1964)

C=2z <J02>M00/J(J + 1), (1)

where the (J,2) are the rotationally averaged squares of the angular-momentum com-
ponents along the principal inertial axes. From the present work and Paper I the spin-
rotation constants of four levels are known, and hence the three M, are overdetermined.
A least-squares fit of equation (1) to the data then yields the M, listed in table 4. Since
the only other hyperfine interaction in these isotopic species—the spin-spin—is also
calculable in the rigid-rotor approximation (being simply determined by (r~2)), the hfs
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TABLE 2

HYPERFINE FREQUENCIES OF THE 2“—'212 H213CO

TRANSITION WITH RESPECT TO LINE CENTER

Transition Relative Intensity \1-\)0'r
FF - FI'F' (Theoretical) (kHz)
3/2,1/2-5/2,3/2 « « . .. ... 0. 69 -111.04
3/2,3/2-5/2,3/2 . . . ... .. 0.13 - 86.76
3/2,5/2-5/2,3/2 « . . . ... 0.03 - 82.57
3/2,3/2-5/2,5/2 « . . v 0. 1. 00 - 78.51
3/2,5/2-5/2,7/2 . . . . . ... 1. 48 - 78.38
3/2,5/2+5/2,5/2 « . « .« . .. 0.92 - 74.32
3/2,1/2-3/2,1/2 « v o o oo 3,33 - 53.21
3/2,1/2-3/2,3/2 « « v o . o o 2.65 - 35.16
3/2,3/2-3/2,1/2 . .« . . ... 2.72 - 28.93
3/2,3/2-3/2,3/2 « « . .. ... 6. 42 - 10.89
3/2,5/2~3/2,3/2 « « « o o 2.58 - 6.69
5/2,3/2-5/2,3/2 « « « « . ... 10. 48 - L22
5/2,7/2-5/2,7/2 + « « o o . 22.85 + 0.20
3/2,3/2-3/2,5/2 « - .« ... 3.05 + 1,49
5/2,7/2-5/2,5/2 « « « « o .. 1.83 + 4.26
3/2,5/2-3/2,5/2 « « « o o . 14. 97 + 5.69
5/2,3/2-5/2,5/2 « « « v . o .. 1. 95 + 7.03
5/2,5/2-5/2,3/2 « « « o . 1.98 + 11,61
5/2,5/2+5/2,7/2 « .« . .« . .. 2.33 + 15.80
5/2,5/2-5/2,5/2 « . . . . . .. 14. 30 + 19,86
5/2,3/2-3/2,1/2 .« .« . ... 0.62 + 56,61
5/2,3/2-3/2,3/2 « .« o . o 0.28 + 74.65
5/2,7/2-3/2,5/2 . . .« ... 1.97 + 84.27
5/2,5/2+3/2,3/2 -+« .. 1. 38 + 87,48

N‘FIF refers to the upper level of the transition and FIIF, to the lower.

TBecause of blending, all listed frequencies are from the best-fit spectrum;
estimated uncertainties are £0. 15 kHz.

TABLE 3

LINE CENTERS AND HYPERFINE COUPLING CONSTANTS

Isotopic Line Center ‘ Hyperfine Constant
Species (kHz) (kHz)
HZCO 14488478.81 + 0.08 CH(ZII) = 0.19 £ 0.07
CH(ZIZ) -2.12 + 0.07
gHuN(r =17.45 + 0.16
13
HZ co 13778804.13 1 0.15 CC(211) =36.01 £ 0.15

CC(212)= 29.71 £ 0.15

CH(le) 0.30 £ 0.09

CH(ZIZ) -1.94 + 0.09

gHuN(r = 17.84 & 0.25

-3
gch“N<"Hc )=21.67 = 0.28

18
HZC o 13165954.91 = 0.13 CH(le) 0.03 + 0.15
CH(le) =-2.23 £ 0.15
ngN(r = 17.60 %+ 0.24
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F16. 2.—Peak frequency of the hyperfine envelope of the 2;; — 2;, transition as a function of line
width at half-intensity (in units of velocity: Av = cAv/»).

TABLE 4

DiacoNAL ELEMENTS OF THE SPIN-ROTATION TENSORS*

H,13CO
SPECIES H,CO H,C®0
NucLEUs H H BC H
Ms....... —3.3940.11 —3.52+0.16 +127.86+0.31 —3.30+0.27
My....... +1.79+0.09 +1.97+0.11 4 19.99+0.23 +1.47+0.20
Me....... —2.754£0.09 —2.53+0.11 + 7.61+£0.23 —2.79+0.20

* In kilohertz.

of any transition may now be calculated. For H,CO and Hy'¥*CO the rotation and cen-
trifugal distortion parameters are now very precisely known from the work of Nerf
(1972, this issue), and for these species the hyperfine frequencies may therefore be cal-
culated absolutely to high accuracy. We have recently detected the 1-cm 313— 31
transition of HyCO with our beam maser, and the measured frequencies fall within a few
parts in 10® of the predicted frequencies.
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